GSAKMP Experiment Results

Introduction

The following test plan has been derived from the GSAKMP Basic Experiment Plan. The tests are broken down into two levels of fault tolerance experiments. The first reviews the functions of the GSAKMP protocol itself and test the basic security functionality of the protocol as it deals with various irregularities. The second set of experiments review how well the GSAKMP protocol performs on a less than perfect network.

This document tests GSAKMP version 0.5 running on RedHat 6.1 and SuSE 6.2 operating systems running the Linux 2.2.x kernel. The hardware was Pentium, Pentium II or III processors ranging from 133 MHz to 400 MHz. Memory ranged from 16 Mb to 128 Mb.

The results show that with a few minor exceptions the protocol performed well in all areas tested. The tests thus far have indicated some functionality not yet available in the protocol, however these areas are currently under development. Other areas of the test plan, specifically the protocol tests, could not be performed due to lack of necessary testing software or equipment. These tests will be performed at the NSA testbed as it is further developed.

Functional experiments
Host configuration tests:

1. Test GUI interface to determine if the host can be tricked into assuming a role that is unauthorized in the configuration table.

A. Test group member role

1) Set up Host A as a group controller/group member/rekey controller.

2) Set up Host B as a group member.

3) Create Group 1 on Host A.

4) Have Host B join Group 1.

5) Using the user interface, attempt to create Group 2 on Host B.

6) Using the user interface, attempt to have Host B rekey out Host A from Group 1.

7) Set up Host C as a group member.

8) Have Host C join Group 1 to ensure Host A’s daemon is still working.

RESULTS: Host A set up the group correctly and Host B was able to join the group. Host B could not create Group 2 or rekey a member of Group 1. These actions were not allowed in the host configuration table. Host C was still able to get into Group 1 after these tests ensuring Group 1 was not locked up because of Host B’s attempted actions.

B. Test group controller, rekey controller

1) Set up Host A as a group controller/rekey controller.

2) Set up Host B as a group controller/group member/rekey controller.

3) Create Group 1 on Host A.

4) Have Host B join Group 1.

5) Create Group 2 on Host B.

6) Attempt to have Host A join Group 2.

7) Set up Host C as a group member.

8) Have Host C join Group 1 and Group 2.

RESULTS: Host A set up Group 1 correctly and Host B was able to join. Host B set up Group 2 correctly; however, since Host A was not authorized the group member role, it was not able to join Group 2. Host C was able to successfully join both Group 1 and Group 2 showing that the attempted actions of Host A did not lock up any groups.

C. Test group controller, group member, rekey controller

1) Set up Host A as a group controller/group member/rekey controller.

2) Set up Host B as a group controller/group member/rekey controller.

3) Create Group 1 on Host A.

4) Have Host B join Group 1.

5) Create Group 2 on Host B.

6) Have Host A join Group 2.

7) Have Host A rekey out Host B from Group 1.

8) Set up Host C as a group member.

9) Have Host C attempt to join Group 1 and Group 2.

RESULTS: Host A set up Group 1 correctly and Host B was able to join. Host B set up Group 2 correctly and since Host A was allowed the group member role, it was able to join Group 2 as well. Host A was also able to rekey out Host B from Group 1. Since Host C was able to join both groups as the last step, we show that the groups did not become locked as a result of testing.

2. Test the host configuration parameters against different inputs in request to join messages.

A. Test for group members outside the allowed IP address range.

1) Configure the gsakmp.conf file to restrict allowed IP addresses.

Add a line similar to: rc in ip 157.185.80.85

Note: This allows only the machine with the IP address of 157.185.80.85 to connect to this group.

2) Set up Host A as a group controller/group member/rekey controller using the gsakmp.conf file from step one.

3) Set up Host B on a system with the matching IP address as a group member.

4) Create Group 1 on Host A.

5) Have Host B join Group 1.

6) Set up Host C on a system with a different IP address as a group member.

7) Have Host C attempt to join Group 1.

RESULTS: Host A set up Group 1 correctly and Host B was able to join because it’s IP address matched one in Host A’s gsakmp.conf file. Host C was not able to join because it did not match any listed in Host A’s gsakmp.conf file.

B. Test for members with a valid IP address, but an invalid signature payload.

1) Set up Host A as a group controller/group member/rekey controller.

2) Set up Host B as a group member.

3) Create Group 1 on Host A.

4) Start packet-capturing utility.

5) Have Host B join Group 1 while capturing all traffic between hosts.

6) Save udp request-to-join packet.

7) Shut down GSAKMP on host A and B.

8) Restart Host A and B.

9) Recreate Group 1 on Host A.

10) Using the packet utility, modify the signature payload of the request-to-join message.

11) Transmit request-to-join packet to Host A.

12) Record any traffic from Host A to Host B.

RESULTS: Initially in this test, Host B was not able to join the group on the second attempt from the packet utility, but the GSAKMP daemon on Host B core dumped. The following is the debug information from Host A and B:

Host B

##processing invitation message...

 checking message type...ok

 verifying that policy token exists in message...ok

 verifying notification...ok

 checking for certificates...ok

 verifying PolicyToken integrity ...ok

 checking Key Server authorization...ok

 verifying signature...ok

 checking for nonce payloads...FAILURE, too many Nonces

##FAILURE

sending NOTIF_NACK

sHandler: sigVal = 11

DMN.sigHandler: sigVal = 11

FATAL: gsakmpd on fire.

Segmentation fault (core dumped)

Host A

Note: The controller did not crash and was still running when this information was taken.

DMN: UDP REC SUCC, size = 1323, type = RTJ

 gid = 224.0.0.111:12345678, ipa = 157.185.80.89

GDR: UDP takeMessage: i_grpIndex = 0

validateRTJ: verifying notification payload...ok

validateRTJ: checking for certificates...ok

validateRTJ: verifying signatures...ok

validateRTJ: checking for nonce...ok

GM: Received RTJ msgfrom 157.185.80.89

##creating invitation message...

 adding policy token...ok

 adding Nonce_R...ok

 adding Nonce_C...ok

 adding notification...ok

 adding KS certificate...ok

 adding GO certificate...ok

 adding signature...ok

##ok

##sending invitation message...ok

##waiting for invitation response...got it

##processing invitation response...

 checking message type...RECEIVED NACK

##FAILURE

Since we were rebroadcasting the packets that we had trapped during an earlier session, Host B had no record that it had ever sent a request-to-join. Host A should have discarded the request-to-join because the signature payload was bad, but instead it ignored it and sent an invitation anyway. When Host B got this invitation, it had the nonce information from the earlier transaction. It couldn’t processes it, but instead of discarding the packet and reporting a failure, it caused a segmentation fault and stopped the daemon. Under normal circumstances, this would have presented an easy Denial-of-Service attack vulnerability.

Two fixes were added to the GSAKMP to correct this. First, if a request-to-join message comes in the signature is now verified. If the signature is bad, the message is rejected and no further transaction occurs. Second, if a host receives an invitation message, but the nonce information cannot be processed, the message is discarded and will not cause the daemon to segment. Current tests show that the GSAKMP operates as desired. When the packet from Host B is rebroadcast with a modified signature, Host A rejects the message and Host B is not admitted to Group 1.

Conformance to policy token tests:

3. Test the entire policy token verification process.

A. Change some portion, as small as one bit, and ensure the policy token fails.

1) Create a token offline using the tokengen program.

2) Using a hex editor, modify one or more bits of the token.

3) Set up Host A as a group controller/group member/rekey controller using modified token.

4) Set up Host B as a group member.

5) Attempt to create Group 1 on Host A.

6) If a group was created, attempt to have Host B join Group 1.

RESULTS: The host could not create a group with a token modified by a single bit. Since the group was not created, a gm could not join. To further this test, modifications were also made to the Certificate Authority root certificate and private key. When the root certificate was modified, the group controller was able to create a group when he should not have been. This is because under the current setup, the root certificate is pre-placed in the certificate database. Since it is already in the database, it is assumed to be good and no further check is performed. But no other members were able to join the group, because the signature of messages would not verify. This problem will be corrected when going to an external certificate database manager. The database manager will be responsible for insuring the certificate has not been modified before passing it off to the GSAKMP.

When the group controller has a valid certificate, but a bit modified private key, the group is still created because there is no need to check our own key when creating a group, but no member can join because our signature cannot be externally verified.

B. Ensure verification of the entire signature authority chain.

RESULTS: The current design uses a Public Key Infrastructure (PKI) that is only one level deep. The “entire signature authority chain” is only one test and is the one that allows the user to get into the group under normal circumstances. Future PKI’s will be built with more depth. At that time, tests will be constructed to test the entire chain of that structure as well.

C. Ensure the token is from an authorized individual.

RESULTS: Currently the GSAKMP cannot support the “auth owner” rule in the token.conf file. This rule should require that the own of the token is the same as that specified by the distinguished name in the auth owner rule.

4. The policy token will define access control based on single parameters in the identification certificates. i.e. assume the policy token access control rule states that a class of distinguished names are allowed access to the group, individuals outside of that distinguished name class will attempt to join the group.

A. Create a certificate structure that has two separate Organizational Units (OU).

1) Modify 05input1.cnf in the certgen directory within the GSAKMP distribution with the O.OrganizationalUnitName_value set to the first organizational name.

2) Fill in location information in 04input.cnf.

3) Add the names of the hosts that will require a certificate in domainNames.

4) Run mkca and mkcerts to generate the root certificate and the first set of certificates for the hosts. You must generate twice as many certificates as you will need to be able to create a second OU.

5) Change the O.OrganizationalUnitName_value in 05input1.cnf to the second organizational unit name.

6) Run mkcerts again using half the number of certificates as in step 4.

At this point you will have a set of certificates for each host some having OU=A others having OU=B.

B. Set up group to allow one Organizational Unit but not the other.

1) Set up Host A as a group controller/group member/rekey controller

2) Modify the token.conf file for Host A so the line:

ac in dsn “/O=Organization/” x509v3 1024 etc… reads

ac in dsn “/OU=A/” x509v3 1024 etc…

3) Set up Host A with a certificate from OU=A.

4) Set up Host B as a group member with a certificate from OU=B.

5) Create Group 1 on Host A.

6) Attempt to have Host B join Group 1.

7) Set up Host C as a group member with a certificate from OU=A.

8) Attempt to have Host C join Group 1.

RESULTS: When the test is preformed as outlined above, Group 1 is successfully created on Host A. Host B cannot join the group since his OU does not match that listed in the token.conf file for Group 1 on Host A. Host C can join the group because his certificate OU matches. When we change the test somewhat and make Host A have an OU outside the range specified in his own token.conf file Group 1 can still be created effectively having Host A as a member even though according to the inclusionary rule he should not be. Only member with the correct OU can join the group as an external member. This minor bug is being fixed so that the group would not have been created initially since Host A is not permitted to be a member of that group.

5. Access control rules can define specific distinguished names, with serial numbers; entities with correct distinguished name but not the correct serial number will attempt to join the group.

RESULTS: This test cannot be preformed with the current revision of the code. Currently serial numbers are not supported as part of a DSN rule. This functionality is being added in further revisions of the code.

6. Access control rules can define specific distinguished names, with serial numbers; the next experiment checks to make sure that the serial numbers are not sufficient for group join.

RESULTS: This test cannot be preformed with the current revision of the code. Currently serial numbers are not supported as part of a DSN rule. This functionality is being added in further revisions of the code.

7. Make sure the dominance principal in the permission field can be enforced as an access control parameter.

A. Create a group with permission level five and have members attempt to join with permission levels two, five and nine.

1) Set up Host A as a group controller/group member/rekey controller using a certificate with permission level five.

2) Create Group 1 on Host A setting the group permission level to five.

3) Set up Host B as a group member using a certificate with permission level two.

4) Have Host B attempt to join Group 1.

5) Set up Host C as a group member using a certificate with permission level five.

6) Have Host C attempt to join Group 1.

7) Set up Host D as a group member using a certificate with permission level nine.

8) Attempt to have Host D join Group 1.

RESULTS: Host A set up Group 1 with permission level five correctly. Hosts C and D were able to join because the permission level in their certificate was five or higher. Host B’s permission level was only two and thus it was excluded from joining the group.

B. Create a group with permission level five using a group controller whose permission level is only two. Have potential members attempt to join with permission levels two, five and nine.

1)
Set up Host A as a group controller/group member/rekey controller using a certificate with permission level two.

2) Attempt to create Group 1 on Host A setting the group permission level to five.

3) Set up Host B as a group member using a certificate with permission level two.

4) Have Host B attempt to join Group 1.

5) Set up Host C as a group member using a certificate with permission level five.

6) Have Host C attempt to join Group 1.

7) Set up Host D as a group member using a certificate with permission level nine.

8) Have Host D attempt to join Group 1.

RESULTS: Host A set up Group 1 with permission level five even though it’s own certificate was only level two. Host C and D were able to join the group since their permission level was five or above, but Host D, with permission level two, was excluded. Host A being allowed to create the group at a higher permission level than it has access to otherwise is a minor bug. In further releases the group controller’s permission level will be checked before a group is created as well as any member attempting to join.

8. Test multiple parameter access controls. An example of this testing would have a policy token specifying that group access control rules use a combination of permissions and distinguished name rules, a host would try to join the group with some, but not all of these rules matching the access criteria.

A. Create a group with permission level five allowing a specific Organizational Unit. Create hosts with various permission levels and distinguished names inside and outside of the group parameters.

1) Use the certificate structure built in test four.

2) Set up Host A as a group controller/group member/rekey controller using a certificate with permission level five and OU=A.

3) Modify the token.conf file for Host A so the line:

ac in dsn “/O=Organization/” x509v3 1024 etc… reads

ac in dsn “/OU=A/” x509v3 1024 etc…

4) Create Group 1 on Host A with the group permission level set to five.

5) Set up Host B as a group member with a certificate with permission level six and OU=A.

6) Attempt to have Host B join Group 1.

7) Set up Host C as a group member with a certificate with permission level two and OU=B.

8) Attempt to have Host C join Group 1.

9) Set up Host D as a group member with a certificate with permission level two and OU=A.

10) Attempt to have Host D join Group 1.

11) Set up Host E as a group member with a certificate with permission level nine and OU=B.

12) Attempt to have Host E join Group 1.

RESULTS: Host A set up the group correctly. Host B was able to join the group because its permission level was above that required by the group and his Organizational Unit matched that in the token.conf file. Host C was not able to join because both the permission level and the OU were outside of the values allowed for that group. Host D was not able to join even though its OU was the same as that for the group because the permission level was lower than that required by the group. Host E was not able to join the group even though its permission level was above that required by the group because the OU was not an allowed value.

B. Perform the test above changing the group controllers certificate and distinguished name to be outside the values being set for the group it is creating.

1) Use the certificate structure built in test four.

2) Set up Host A as a group controller/group member/rekey controller using a certificate with permission level two and OU=B.

3) Modify the token.conf file for Host A so the line:

ac in dsn “/O=Organization/” x509v3 1024 etc… reads

ac in dsn “/OU=A/” x509v3 1024 etc…

4) Create Group 1 on Host A with the group permission level set to five.

5) Set up Host B as a group member with a certificate with permission level six and OU=A.

6) Attempt to have Host B join Group 1.

7) Set up Host C as a group member with a certificate with permission level two and OU=B.

8) Attempt to have Host C join Group 1.

9) Set up Host D as a group member with a certificate with permission level two and OU=A.

10) Attempt to have Host D join Group 1.

11) Set up Host E as a group member with a certificate with permission level nine and OU=B.

12) Attempt to have Host E join Group 1.

RESULTS: Host A set up the group with permission level five and requiring an OU=A even though its own values were outside that range. All external hosts behaved correctly. Host B was able to join the group because its permission level was above that required by the group and his Organizational Unit matched that in the token.conf file. Host C was not able to join because both the permission level and the OU were outside of the values allowed for that group. Host D was not able to join even though its OU was the same as that for the group because the permission level was lower than that required by the group. Host E was not able to join the group even though its permission level was above that required by the group because the OU was not an allowed value. Host A exhibited the results of the minor bugs found in tests four and seven. Once these are corrected Host A will not be able to create group that is outside of its own parameters.

9. Test an unauthorized key server trying to download a key to a member.

RESULTS: This test will require us to be able to insert saved packets during a live session and cannot be performed at the SPARTA testbed. Further software is being reviewed to allow us to perform this test and will be implemented as the NSA testbed is further developed.

10. Test an unauthorized rekey authority trying to command a rekey for a group.

A. Set up Host A as a group controller/group member/rekey controller.

B. Set up Host B as a group controller/group member/rekey controller.

C. Create Group 1 on Host A.

D. Have Host B join Goup 1 as a group member.

E. Create Group 2 on Host B.

F. Have Host A join Group 2 as a group member.

G. Using the GUI, attempt to have Host B rekey Host A out of Group 1.

H. Using the GUI, attempt to have Host A rekey Host B out of Group 1.

RESULTS: Host A created Group 1 correctly and Host B could join. Host B created Group 2 correctly and Host A could join. Host B could not rekey Host A out of Group 1 because Host B had only member privileges in Group 1. Host A successfully rekeyed Host B out of Group 1 since Host A had rekey authority for that group.

11. Single and multiple parameters should be specified for authorization parameters, individuals trying to act in the authorized role should have none and/or some of the authorizations for that role.

RESULTS: This test is still under design. Parameters in the token.conf file beginning with ‘auth’ must be tested.

Performance experiments
Protocol failures:

12. Test a request to join message sent out from a member with no response from a key server.

RESULTS: This test cannot be performed at this time. It will be performed at the NSA testbed after the addition of software to allow certain packets to be blocked in real-time.

13. Test an invitation sent from key server with no invitation response from a potential member.

RESULTS: This test cannot be performed at this time. It will be performed at the NSA testbed after the addition of software to allow certain packets to be blocked in real-time.

14. Test a key download message sent from the key server with no acknowledgement message from the member.

RESULTS: This test cannot be performed at this time. It will be performed at the NSA testbed after the addition of software to allow certain packets to be blocked in real-time.

15. Test an invitation sent to a potential member without a request to join.

RESULTS: This test cannot be performed at this time. It will be performed at the NSA testbed after the addition of software to allow certain packets to be blocked in real-time.

16. Test an invitation response sent to the key server with no invitation having been sent.

RESULTS: This test cannot be performed at this time. It will be performed at the NSA testbed after the addition of software to allow certain packets to be blocked in real-time.

17. Test a key download message sent to a member with no preceding messages.

RESULTS: This test cannot be performed at this time. It will be performed at the NSA testbed after the addition of software to allow certain packets to be blocked in real-time.

18. Test an acknowledgment message sent from a member to the key server with no preceding messages.

RESULTS: This test cannot be performed at this time. It will be performed at the NSA testbed after the addition of software to allow certain packets to be blocked in real-time.

19. Test a rekey message sent to group members that are in the process of joining a group.

RESULTS: This test cannot be performed at this time. It will be performed at the NSA testbed after the addition of software to allow certain packets to be blocked in real-time.

20. Test multiple rekey messages sent to members out of sequence.

RESULTS: This test cannot be performed at this time. It will be performed at the NSA testbed after the addition of software to allow certain packets to be blocked in real-time.

Network generated experiments:

21. Valid messages of the GSAKMP protocol should be purposely misrouted to ensure that the protocol catches the error and fails the exchange.

RESULTS: This test cannot be performed at this time. It will be performed at the NSA testbed after the addition of software to allow packets to be held and transmitted out of order on a live network.

22. Several rekey messages should be sent to an established group, a subset of the group receives the messages later than the rest of the group.

RESULTS: This test cannot be performed at this time. It will be performed at the NSA testbed after the addition of software to allow packets to be held and transmitted out of order on a live network.

23. Several rekey messages should be sent to an established group, for a subset of the group these messages arrive out of sequence.

RESULTS: This test cannot be performed at this time. It will be performed at the NSA testbed after the addition of software to allow packets to be held and transmitted out of order on a live network.

